1401/10/04 11:30

پیش بینی حوادث غیر مترقبه با هوش مصنوعی

وقتی نوبت به پیش‌بینی بلایای ناشی از رویدادهای شدید (زمین‌لرزه‌ها، بیماری‌های همه‌گیر یا «امواج سرکش» که می‌توانند سازه‌های ساحلی را از بین ببرند)می‌رسد،مدل‌سازی محاسباتی با یک چالش تقریباً غیرقابل حل مواجه می شود.

از نظر آماری، این رویدادها آنقدر نادر هستند که داده‌های کافی وجود ندارد که آنها را به استفاده از مدل‌های مناسب برای پیش‌بینی دقیق زمان وقوع بعدی این حوادث برساند. در مطالعه‌ای جدید در علوم محاسباتی طبیعت، دانشمندان توضیح می‌دهند که چگونه الگوریتم‌های آماری را که به داده‌های کمتری برای انجام پیش‌بینی‌های دقیق و کارآمد نیاز دارند، با تکنیک یادگیری ماشینی قدرتمندی که در براون توسعه یافته، ترکیب کردند و آن را برای پیش‌بینی سناریوها، احتمالات و حتی موارد استثنایی،آموزش دادند.

با انجام این کار، تیم تحقیقاتی دریافت که این چارچوب جدید می‌تواند راهی برای دور زدن نیاز به مقادیر عظیم داده‌ای که به طور سنتی برای این نوع محاسبات مورد نیاز است، فراهم کند، در عوض اساساً چالش بزرگ پیش‌بینی رویدادهای نادر را به یک موضوع با کیفیت تبدیل کند.

جورج کارنیاداکیس، استاد ریاضیات کاربردی و مهندسی در براون و نویسنده مطالعه، می گوید: «شما باید متوجه باشید که اینها رویدادهای تصادفی هستند. طغیان یک بیماری همه گیر مانند COVID-19، فاجعه زیست محیطی در خلیج مکزیک، یک زلزله، آتش سوزی های عظیم در کالیفرنیا، یک موج 30 متری که یک کشتی را واژگون می کند - اینها رویدادهای نادری هستند . ما داده‌های تاریخی زیادی داریم. ما نمونه‌های کافی از گذشته برای پیش‌بینی بیشتر آنها در آینده نداریم. سؤالی که در این مقاله به آن می‌پردازیم این است: بهترین داده‌های ممکن که می‌توانیم از آن برای به حداقل رساندن تعداد استفاده کنیم چیست؟

محققان پاسخ را در روش نمونه گیری متوالی به نام یادگیری فعال یافتند. این نوع از الگوریتم‌های آماری نه تنها قادر به تجزیه و تحلیل داده‌های ورودی در آن‌ها هستند، بلکه مهم‌تر از آن، می‌توانند از اطلاعات یاد بگیرند تا نقاط داده مرتبط جدیدی را که به همان اندازه یا حتی برای نتیجه‌ای که محاسبه می‌شود اهمیت دارند، برچسب‌گذاری کنند.

در ابتدایی ترین سطح، آنها اجازه می دهند کارهای بیشتری انجام شود. این برای مدل یادگیری ماشینی که محققان در مطالعه از آن استفاده کردند بسیار مهم است. این مدل که DeepOnet نام دارد، نوعی شبکه عصبی مصنوعی است که از گره های به هم پیوسته در لایه های متوالی استفاده می کند که تقریباً اتصالات ایجاد شده توسط نورون ها در مغز انسان را تقلید می کند. DeepOnet به عنوان یک عملگر عصبی عمیق شناخته می شود. این شبکه از شبکه های عصبی مصنوعی معمولی پیشرفته تر و قدرتمندتر است زیرا در واقع دو شبکه عصبی در یکی است و داده ها را در دو شبکه موازی پردازش می کند. این به آن اجازه می‌دهد تا مجموعه‌های عظیمی از داده‌ها و سناریوها را با سرعتی سرسام‌آور تجزیه و تحلیل کند تا به محض اینکه بفهمد به دنبال چه چیزی می‌گردد، مجموعه‌های به همان اندازه عظیمی از احتمالات را از بین ببرد.

گلوگاه این ابزار قدرتمند، به ویژه در رابطه با رویدادهای نادر، این است که اپراتورهای عصبی عمیق برای انجام محاسبات مؤثر و دقیق به هزاران داده نیاز دارند تا آموزش ببینند. در این مقاله، تیم تحقیقاتی نشان می‌دهد که همراه با تکنیک‌های یادگیری فعال، مدل DeepOnet می‌تواند در مورد پارامترها یا پیش‌سازهایی که به دنبال رویداد فاجعه‌باری است که کسی در حال تجزیه و تحلیل است، آموزش ببیند، حتی زمانی که نقاط داده زیادی وجود ندارد.

کارنیاداکیس گفت: «هدف این نیست که همه داده‌های ممکن را بگیریم و آن‌ها را در سیستم قرار دهیم، بلکه به دنبال رویدادهایی باشیم که نشانه‌ای از رویدادهای نادر باشند. ما ممکن است نمونه های زیادی از رویداد واقعی نداشته باشیم، اما ممکن است آن پیش سازها را داشته باشیم. از طریق ریاضیات، آنها را شناسایی می کنیم، که همراه با رویدادهای واقعی به ما کمک می کند تا این اپراتور تشنه داده را آموزش دهیم. در این مقاله، محققان این رویکرد را برای تعیین دقیق پارامترها و دامنه‌های مختلف احتمالات برای حوادث خطرناک در طول همه‌گیری، یافتن و پیش‌بینی امواج سرکش، و تخمین زمانی که یک کشتی به دلیل استرس به نصف می‌شکند، اعمال می‌کنند. به عنوان مثال، با امواج سرکش - امواجی که بزرگتر از دو برابر امواج اطراف هستند - محققان دریافتند که می توانند با بررسی شرایط موجی احتمالی که به صورت غیرخطی در طول زمان برهمکنش غیرخطی دارند را کشف کنند.

محققان دریافتند روش جدید آنها از تلاش‌های مدل‌سازی سنتی بهتر عمل می‌کند و معتقدند چارچوبی را ارائه می‌دهد که می‌تواند به طور موثر انواع رویدادهای نادر را کشف و پیش‌بینی کند. در این مقاله، تیم تحقیقاتی چگونگی طراحی آزمایش‌های آینده توسط دانشمندان را مشخص می‌کند تا بتوانند هزینه‌ها را به حداقل برسانند و دقت پیش‌بینی را افزایش دهند...

منبع:شبکه علمی ثریا